Trifluoromethyl Hypobromite, CF₃OBr[†]

Rolf Minkwitz,* Raimund Bröchler, and Andreas Kornath

Anorganische Chemie, Fachbereich Chemie, Universität Dortmund, 44221 Dortmund, Germany

Ralf Ludwig and Frank Rittner

Physikalische Chemie, Fachbereich Chemie, Universität Dortmund, 44221 Dortmund, Germany

Received September 11, 1996[⊗]

The synthesis and isolation of the hypobromite CF_3OBr is reported. CF_3OBr is formed besides $Me_4N^+BrF_2^-$ by the reaction of CF_3OCl and $Me_4N^+Br_3^-$ via an addition—elimination mechanism. The initially formed solid, $[2CF_3OBr \cdot Me_4N^+BrF_2^-]$, was characterized by ¹³C and ¹⁹F NMR, Raman, IR, and mass spectra. The hypobromite was separated from the solid by high-vacuum condensation onto a cold surface and characterized by matrix isolation multichannel Raman spectroscopy. An ab initio calculation was performed, and a force field and the torsional barrier of CF₃OBr were calculated. The calculation predicts an eclipsed conformation with a rotional barrier of 3.4 kcal/mol. The photolytic decomposition of CF₃OBr in the solid state and in an argon matrix was investigated.

Introduction

The first results on the synthesis and isolation of organofluorine hypohalites appeared in 1948, when trifluoromethyl hypofluorite CF₃OF was identified.¹ The hypochlorite CF₃OCl was described 20 years later for the first time.^{2,3} An attempt to prepare the unknown hypobromite CF₃OBr was carried out by Lorenzen-Schmidt et al.^{4,5} in 1994 and 1995. It was formed in a matrix cage during the course of the reaction of ¹⁸O₃ with CF₃Br. Evidence for the existence of this molecule is based only on three observed bands for the CF₃ group.

The existing methods for the preparation of organofluorine hypohalites can be arbitrarily divided into catalytic and noncatalytic. The most important method for the preparation of CF₃OX (X = F, Cl) is the catalyzed action of F₂ or ClF on carbonyl difluoride. The CsF-catalyzed reaction of bromine fluoride with carbonyl difluoride seems not to be successful because the reaction temperature is above the decomposition temperature of bromine fluoride. Our attempts to prepare CF₃-OBr from BrCl and CF₃OCl gave only low yields of impure product. During our investigation of the synthetic potential⁶⁻⁸ of CF₃OCl, we found an unusual way to prepare the hypobromite in high purity.

The CF₃OBr seems to play a role as an intermediate decomposition product in the course of the ozone layer depletion by halones such as CF₃Br, whose emission is on the order of 1820 tons/year.⁹

[†]Raman Matrix Spectroscopy. 2. Part 1: Kornath, A. J. Raman Spectrosc. **1997**, 28, 9.

- [®] Abstract published in Advance ACS Abstracts, April 15, 1997.
- (1) Kellog, K. B.; Cady, G. H. J. Am. Chem. Soc. 1948, 70, 3986.
- (2) Gould, D. E.; Anderson, L. R.; Young, D. E.; Fox, W. B. J. Chem. Soc., Chem. Commun. 1968, 1564.
- (3) Schack, C. J.; Maya, W. J. Am. Chem. Soc. 1969, 91, 2902.
- (4) Lorenzen-Schmidt, H.; Weller, R.; Schrems, O. Ber. Bunsen-Ges. Phys. Chem. 1994, 98,1622.
- (5) Lorenzen-Schmidt, H.; Weller, R.; Schrems, O. J. Mol. Struct. 1995, 349, 333.
- (6) Minkwitz, R.; Bröchler, R.; Preut, H. Z. Anorg. Allg. Chem. 1995, 621, 1247.
- (7) Minkwitz, R.; Bröchler, R.; Schütze, M. Z. Anorg. Allg. Chem. 1995, 621, 1727.
- (8) Minkwitz, R.; Bröchler, R.; Berkei, M. Z. Anorg. Allg. Chem. 1996, 622, 1749.

Experimental Section

All synthetic work and sample handling were performed by employing standard Schlenk techniques and a standard glass vacuum line. The glass vacuum line and the reaction vessels were treated with CF₃OCl prior to use. Nonvolatile materials were handled under dry nitrogen. CF₃OCl was prepared in a stainless steel vessel, from F₂CO and CIF using CsF as catalyst.^{10,11}

Infrared spectra were recorded on a Bruker ifs 113v spectrophotometer. Spectra of dry powders were obtained in a low-temperature cell between CsI plates. The Raman spectra were recorded on a Jobin Yvon T64000 spectrometer using an Ar⁺ laser (514.5 nm) from Spectra Physics. The spectra of $[2CF_3OBr \cdot Me_4N^+BrF_2^-]$ were recorded in a glass tube cooled with liquid nitrogen. The ¹⁹F (262 MHz) and ¹³C (75.432 MHz) NMR spectra were obtained in CH₃CN on a Bruker DPX 300 with CFCl₃ used as internal reference. The mass spectra were recorded on a Finnigan MAT CH-5.

Preparation of [2CF₃OBr·Me₄N⁺BrF₂⁻]. CF₃OCl (964 mg 8 mmol) was condensed into a dry 50 mL glass vessel onto 313 mg (1 mmol) of Me₄N⁺Br₃⁻. The reaction mixture was allowed to warm slowly to -70 °C and kept at this temperature for 3 days. After removal of the volatile materials at -90 °C under vacuum, a colorless, extremely moisture-sensitive solid was obtained. It is stable below -50 °C. The salt is soluble in dry CH₃CN, but slowly decomposes at -35 °C to Me₄N⁺BrF₄⁻, F₂CO, BrF₃, and Br₂. Therefore, the NMR spectra show, besides the product signals, those of the decomposition products. Spectral data are as follows. ¹⁹F NMR (in CH₃CN): ϕ –55.0 (s) (CF₃-OBr); $\phi = -41.5$ (s) (BrF₂⁻); $\phi = -35.7$ (s) (BrF₄⁻); $\phi = -20.2$ (s) (F₂CO); $\phi - 15.8$ (s) (BrF₃). ¹³C NMR (in CH₃CN): δ 133.5 (t), J_{CF} 308 Hz (F₂CO); δ 118.9 (q), J_{CF} 261 Hz (CF₃OBr); δ 54.3 (t), J_{CH} 4 Hz (Me₄N⁺). MS (70 eV, -40 °C) (*m*/*z* (fragment), relative intensty): 174/176/178 (Br₂O⁺), 16/30/15; 164/166 (CF₃OBr⁺), 73/72; 158/160/ 162 (Br2⁺), 44/64/44; 145/147 (F2COBr), 6/7; 98/100 (BrF⁺), 31/29; 95/97 (BrO⁺), 20/19; 79/81 (Br⁺), 75/74; 69 (CF₃⁺), 72; 66 (F₂CO), 88; 50 (CF₂⁺), 19; 47 (COF⁺), 100. Infrared (solid, ~ -70 °C), cm⁻¹: 3050 w, 1487 vs, 1419 s, 1312 vs, 1244 vs (br), 1118 s (br), 949 s, 908 m, 892 m, 713 s, 708 sh, 654 s, 617 m, 511 s, 449 s, 316 vs, 302 sh, 213 s. Raman (solid, -78 °C), cm⁻¹: 3053 m, 2996 s, 2971 m, 2939 m, 2910 w, 2880 vw, 2833 m, 1491 vw, 1461 m, 1428 m, 1325 w, 1305 w, 1293 w, 1238 sh, 1222 m, 1174 w, 1113 w, 955

- (9) Krüger, B. C.; Fabian, P. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 1062.
- (10) Gould, D. E.; Anderson, L. R.; Young, D.; Fox, W. B. J. Am. Chem. Soc. 1969, 91, 1310.
- (11) Schack, C. J.; Maya, W. J. Am. Chem. Soc. 1969, 91, 2902.

Figure 1. Vibrational spectra of $[2CF_3OBr \cdot NMe_4BrF_2]$: trace A, IR spectrum of the solid on a CsI plate at -90 °C; trace B, Raman spectrum of the solid at -78 °C.

m, 914 m, 896 w, 758 m, 716 vs, 656 m, 619 w, 516 s, 459 w, 372 w, 342 m, 329 vs, 316 vs, 303 vs, 199 m, 122 m.

Isolation of CF₃OBr. The apparatus previously described for multichannel Raman matrix spectroscopy¹² was used for the isolation of solid CF₃OBr. A dry 35 mL glass vessel containing 150 mg of [2CF₃OBr·Me₄N⁺BrF₂⁻] was connected to the condensation tube of the apparatus. The glass vessel was slowly warmed from -70 to -50 °C, and the volatile CF₃OBr was condensed at a pressure of less than 5×10^{-6} hPa (mbar) onto the cold surface (-258 °C). Experiments to obtain an argon matrix layer by passing the rare gas over the decomposing solid were unsuccessful. Therefore, the evolved CF₃-OBr was mixed with argon in front of the cold surface. The pressure increased during the condensation up to 2×10^{-5} hPa (mbar).

Results and Discussion

Formation of [2CF₃OBr·Me₄N⁺BrF₂⁻]. The tribromide $NMe_4^+Br_3^-$ reacts at -70 °C with an excess of CF₃OCl with the formation of the solid [2CF₃OBr·Me₄N⁺BrF₂⁻], Cl₂, and F₂CO according to reaction I.

$$4CF_{3}OCl + Me_{4}N^{+}Br_{3}^{-} \xrightarrow[CF_{3}OCl]{} CF_{3}OCl}$$

$$[2CF_{3}OBr \cdot Me_{4}N^{+}BrF_{2}^{-}] + Cl_{2} + 2F_{2}CO \quad (I)$$

$$I$$

The reaction products were characterized by vibrational spectroscopy. The Raman and IR spectra of **I** are shown in Figure 1 and are discussed later. The colorless $[2CF_3OBr-Me_4N^+BrF_2^-]$ is soluble in dry acetonitrile with slow decomposition at -35 °C. Therefore, the ¹⁹F NMR spectrum shows, besides the signals of CF₃OBr at -55 ppm and of BrF₂⁻ at -41.5 ppm, the signals for the decomposition products BrF₄⁻ at -35.7 ppm (-37 ppm),¹³ F₂CO at -20.2 ppm, and BrF₃ at -15.8 ppm (-16.3 ppm).¹⁴ Attempts to obtain single crystals failed because of the instability in solution.

The unusual reaction (I) proceeds in several steps, probably via an addition–elimination mechanism proposed in Scheme 1. First the positively polarized chlorine of CF₃OCl may attack the tribromide, forming CF₃OBr and BrCl₂⁻, which may then undergo further reaction with formation of BrF₂⁻, Cl₂, and F₂CO.

Decomposition of $[2CF_3OBr \cdot Me_4N^+BrF_2^-]$. The first indication for CF₃OBr was obtained from the MS spectra of

Figure 2. Raman spectra of $[2CF_3OBr\cdot NMe_4BrF_2]$ during the removal of CF₃OBr in the temperature range from -70 °C to room temperature.

Scheme 1. Proposed Reaction Route for the Formation of $[2F_3OBr \cdot NMe_4BrF_2]$

$$F_{3}C - O - CI$$

$$F_{3}C - O - CI$$

$$F_{3}C - O [CI$$

$$F_{3}C - O [CI]$$

$$F_{3}C - Br - Br]^{-}$$

$$F_{3}C - O [CI]$$

$$F_{3}C - Br - Br]^{-}$$

$$F_{3}C - O [CI]$$

$$F_{3}C - Br - Br]^{-}$$

$$F_{3}C - O [CI]$$

$$F_{3}C - Br - Br]^{-}$$

δ

$$\begin{array}{c|c} \delta^{+} & & Cl & [O - CF_{3} \\ \hline Cl & - \\ \hline Cl & - \\ \hline Cl & - \\ \hline Cl & Br - OCF_{3} \end{bmatrix}^{-} \\ \delta^{-} \end{array}$$

$$\begin{array}{c|c} Cl & Br - OCF_{3} \\ \hline Cl & Br - OCF_{3} \end{bmatrix}^{-} \\ \end{array}$$

$$\begin{array}{c|c} (4) \\ Cl & Br - OCF_{3} \end{bmatrix}^{-} \\ \end{array}$$

 $[CF_{3}O-Br-OCF_{3}]^{-} \longrightarrow [F-Br-F]^{-} + 2 F_{2}CO (5)$

compound **I**. The MS spectra show the molecular peak of CF₃-OBr and its fragments. More detailed information was obtained by recording Raman spectra during the decomposition of **I**. Figure 2 shows the vacuum thermolysis of **I** in the temperature range between -78 °C and room temperature.

The spectra of $[2CF_3OBr \cdot Me_4N^+BrF_2^-]$ before decomposition in Figure 1 show the bands of CF_3OBr , as discussed later, accompanied by the typical bands of the tetramethylammonium cation.¹³ The Raman-active symmetric Br-F stretching mode of BrF_2^- coincides with the antisymmetric CF_3 deformation of CF_3OBr at 516 cm⁻¹. During the decomposition (Figure 2) under vacuum, the CF_3OBr is removed completely while the residual $Me_4N^+BrF_2^-$ decomposes further to give $Me_4N^+BrF_4^$ and $Me_4N^+Br^-$ (reaction II). Therefore, the line at 516 cm⁻¹ is replaced by the three Raman-active lines of BrF_4^- during the decomposition. The final spectrum in Figure 2 consists of pure

⁽¹²⁾ Kornath, A.; Köper, I. J. Raman Spectrosc., in press.

⁽¹³⁾ Wilson, W. W.; Christe, K. O. Inorg. Chem. **1989**, 28, 4172

⁽¹⁴⁾ Breuer, W.; Frohn, H. J. J. Fluorine Chem. 1987, 34, 443.

Trifluoromethyl Hypobromite

Table 1. Raman Data^a for CF₃OBr Compared to Those for CF₃OF and CF₃OCl

CF_3OF^b		CF_3OCl^b		CF ₃ OBr			
liquid	Ar matrix	liquid	Ar matrix	solid	Ar matrix	assignt	
1310(1)	1288 (5)	1275 (3)	1269 (17)	1263 (6)	1251 (3)	$\nu_{\rm as}({\rm CF}_3), {\rm A}'$	
	1250 (7)		1221 (8)	1176 (16)	1170 (6)	$\nu_{\rm as}({\rm CF}_3), {\rm A}^{\prime\prime}$	
1205 (3)	1211 (14)	1190 (2)	1200 (3)	1140 (6)		$\nu_{\rm s}({\rm CF}_3) {\rm A}'$	
				1103 (5)			
				986 (7)	981 (14)	(661 + 332)	
946 (16)	945(54)	917 (26)	920 (28)	914 (36)	914 (35)	ν(CO), Α'	
882 (100)	883(100)	781 (100)	783 (100)	732 (100)	734 (66)	$\nu(OX), A'$	
				727 (89)	725 (88)		
868 (8)	871 (7)					$2\delta(COF), A'$	
			776 (24)			ν (O ³⁷ Cl), A'	
679 (12)	678 (24)	666 (15)	663 (30)	661 (21)	659 (27)	$\delta_{\rm s}({\rm CF}_3), {\rm A}'$	
609 (3)	606 (9)	611 (3)	609 (15)	617 (4)	615 (6)	$\delta_{\rm as}({\rm CF}_3), {\rm A}''$	
587 (5)	582 (9)	561 (14)	558 (28)	527 (85)	527 (90)	$\delta_{as}(CF_3), A'$	
		548 (12)	547 (9)			CF ₃ OCl····Cl ₂	
			539 (10)				
		430 (1)		436 (2)	438 (4)	$\rho(CF_3), A''$	
436 (10)	433(34)	397 (41)	398 (62)	346 (66)	345 (89)	$\delta(\text{COX}), \text{A}'$	
				340 (83)	337 (100)		
				332 (92)	320 (sh)		
259 (3)	256 (16)	220 (4)	239 (5)	194 (20)	191 (23)	$\rho(CF_3), A'$	
285 (sh)		235 (sh)				$2\tau(CF_3), A'$	
144 (5)		122 (6)		131 (6)	128 (3)	$\tau(CF_3), A''$	

^{*a*} Frequencies in cm⁻¹. ^{*b*} Data from ref 15.

 $2[2CF_{3}OBr \cdot Me_{4}N^{+}BrF_{2}^{-}] \xrightarrow{-50 \circ C} 4CF_{3}OBr + Me_{4}N^{+}BrF_{4}^{-} + Me_{4}N^{+}Br^{-} (II)$

Me₄N⁺BrF₄⁻ (ν_{s} (in phase)(Br-F) 520 cm⁻¹; ν_{s} (out of phase)-(Br-F) 447 cm⁻¹; δ_{s} (in plane) 240 cm⁻¹).¹³

Raman Spectra of CF₃OBr. The Raman spectra of solid and matrix-isolated CF₃OBr are shown in Figure 3. The vibrations of CF₃OBr were assigned by comparison with those of the known hypohalites CF₃OF¹⁵ and CF₃OCl¹⁵ and the ab initio calculation, which gave a structure of symmetry C_s . The observed and calculated frequencies of CF₃OBr are summarized in Table 3.

The weak lines at 1263, 1176, and 1140 cm⁻¹ are assigned to the CF stretching modes of the CF₃O group and are comparable to those of CF₃OF,¹⁵ 1310 and 1205 cm⁻¹, and of CF₃OCl,¹⁵ 1275 and 1190 cm⁻¹. The line at 914 cm⁻¹ belongs to the CO stretching mode, which is observed at 946 cm⁻¹ for CF₃OF and 917 cm⁻¹ for CF₃OCl. A typical intense line for hypohalites is the oxygen-halogen stretching mode. It occurs for the two known hypobromites at 761 cm⁻¹ (O₂NOBr)¹⁶ and 659 cm⁻¹ (F(O₂)SOBr),¹⁷ respectively. The OBr stretching mode of CF₃OBr is observed at 732/727 cm⁻¹.

The deformation modes occur in the region below 700 cm⁻¹. The three lines at 661, 617, and 527 cm⁻¹ are assigned to CF₃ deformation modes by analogy with the assigned absorptions for CF₃OF, 679, 609, and 587 cm⁻¹, and CF₃OCl, 666, 611, and 561 cm⁻¹. Comparing the CF₃ deformation modes of the hypohalites, one can see an inversion of the intensities. For CF₃OF¹⁵ the relative intensities are (12), (3), (5), for CF₃OCl¹⁵ (30), (15), (28), and for CF₃OBr (21), (4), (85). The triply split line at 346/340/332 belongs to the COBr deformation mode. This COX deformation appears at 436 cm⁻¹ for CF₃OF and 397 cm⁻¹ for CF₃OCl. The rocking deformation mode of CF₃ is expected to occur in the frequency region below 200 cm⁻¹ and is assigned to the 194 cm⁻¹ band. The line at 131 cm⁻¹ is assigned to the torsional mode by analogy to CF₃OF (144 cm⁻¹)

 Table 2.
 Experimental and Calculated (Eclipsed Conformation)

 Vibrational Data^a for CF₃OBr

calcd freq				
HF	MP	obsd Raman freq		
6-311G*	2 6-31G*	solid	Ar matrix	assignt
1314	1256	1263	1251	$\nu_{as}(CF_3), A'$
1267	1208	1176	1170	$\nu_{\rm as}({\rm CF}_3), {\rm A}''$
1266	1191	1140		$\nu_{\rm s}({\rm CF}_3), {\rm A}'$
926	872	914	914	ν(CO), Α'
742	692	732/727	734/725	$\nu(OX), A'$
650	619	661	659	$\delta_{\rm s}({\rm CF}_3), {\rm A}'$
603	575	617	615	$\delta_{as}(CF_3), A''$
521	499	527	527	$\delta_{as}(CF_3), A'$
425	402	436	438	$\rho(CF_3), A''$
341	326	346/340/332	345/337/320	$\delta(COX), A'$
173	172	194	191	$\rho(CF_3), A''$
93	100	130	128	$\tau(CF_3), A''$

^a Frequencies in cm⁻¹.

Figure 3. Raman spectra of CF₃OBr at 15 K: trace A, solid CF₃OBr; trace B, CF₃OBr in an argon matrix (M:R = 1:250). Experimental conditions: laser, 250 mW; slit, 100 μ m; integration time, 300 s.

and CF_3OCl (122 cm⁻¹). The ab initio calculation gave a lower value of 89 cm⁻¹ for the gas phase. This discrepancy is in accord with the torsional modes of CF_3OF^{18} and CF_3OCl ,¹⁸ which have already been described by Hammaker et al.

⁽¹⁵⁾ Kuo, J. C.; DesMarteau, D. D.; Fateley, W. G.; Hammaker, R. M.; Marsden, C. J.; Witt, J. D. *J. Raman Spectrosc.* **1980**, *9*, 230.

⁽¹⁶⁾ Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1573.

⁽¹⁷⁾ Aubke, F.; DesMarteau, D. D. Fluorine Chem. Rev. 1977, 8, 74.

Table 3. Calculated Frequencies^a for the Eclipsed and Staggered Conformations of CF3OBr

calcd freq ^a					
conformn	staggered				
MP2 6-31G*	HF 6-311G*	MP2 6-31G*	assignt		
1256	1300	1248	$\nu_{\rm as}(\rm CF_3), A'$		
1208	1279	1220	$\nu_{\rm as}({\rm CF}_3), {\rm A}''$		
1191	1255	1174	$\nu_{\rm s}({\rm CF}_3), {\rm A}'$		
872	936	880	$\nu(CO), A'$		
692	738	693	$\nu(OX), A'$		
619	647	618	$\delta_{\rm s}({\rm CF}_3),{\rm A}'$		
575	596	568	$\delta_{\rm as}({\rm CF}_3), {\rm A}''$		
499	510	487	$\delta_{as}(CF_3), A'$		
402	407	377	$\rho(CF_3), A''$		
326	337	319	$\delta(COX), A'$		
172	202	205	$\rho(CF_3), A'$		
100	-82	-89	τ(CF ₃), A"		
	calcd conformn MP2 6-31G* 1256 1208 1191 872 692 619 575 499 402 326 172 100	calcd freq ^a conformn staggered MP2 6-31G* HF 6-311G* 1256 1300 1208 1279 1191 1255 872 936 692 738 619 647 575 596 499 510 402 407 326 337 172 202 100 -82	calcd freq ^a staggered conformn MP2 6-31G* HF 6-311G* MP2 6-31G* 1256 1300 1248 1208 1279 1220 1191 1255 1174 872 936 880 692 738 693 619 647 618 575 596 568 499 510 487 402 407 377 326 337 319 172 202 205 100 -82 -89		

^{*a*} Frequencies in cm⁻¹.

Besides the 12 fundamental vibrations, a weak line at 986 cm⁻¹ was observed which we attribute to a combination of the CF_3 and the COBr deformation modes (332 + 661 = 993).

During the Raman experiments, it was found that CF₃OBr partially decomposes by irradiation with the laser beam (514.5 nm). The matrix-isolated CF₃OBr was stable for a long period, and decomposition was only measured by an incident laser power of more than 250 mW. The photolysis of CF₃OBr produces mainly bromine and various still-unidentified organofluorine compounds. In contrast to the thermal decomposition, formation of F₂CO was not observed.

Ab Initio Calculation. The restricted Hartree-Fock calculations were performed with the Gaussian-94 program¹⁹ using Gaussian-type basis functions. The energy minima with respect to nuclear coordinates were obtained by the simultaneous relaxation of all the geometric parameters using the gradient method of Pulay.²⁰ The calculated structural parameters were determined with RHF/6-31G* and RHF/6-311G* calculations, along with electron correlation at the MP2/6-31G* level.²¹

For the C_s constrained symmetric structure, the fluoride atom of the trifluoromethyl group can be positioned in two different orientations with respect to the O-Br bond. The relative stabilities of these conformations can be judged by investigating the potential surface. Therefore the torsional potential function

B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Ciolowski, J.; Stefanov, B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Steward, J. J. P.; Head-Gordon, M.; Gonzales, C.; Pople, J. A. Gaussian 94, revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1995. (20) Pulay, P. J. Comput. Chem. 1982, 3, 556.

(21) For an authoritative description of the ab initio methods and basis sets employed here, see: Hehre, W. G.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.

Table 4. Selected Calculated Geometric Parameters^a for CF₃OBr (Eclipsed Conformation) Compared to Those for CF3OF and CF₃OCl

			CF ₃ OBr		
	CF_3OF^b	CF ₃ OCl ^c	HF 6-31 G*	MP2 6-31G*	
r(CF)	131.9(3)	132.5(3)	131.0	133.8	
r(CO)	139.5(6)	136.5(7)	135.1	137.7	
r(OX)	142.1(6)	167.9(3)	180.6	186.9	
∠(FCF)	109.4(10)	109.2(7)	108.2	108.7	
∠(COX)	104.9(6)	112.9(5)	120.5	111.9	

^a Bond distances in pm and angles in degrees. ^b Bond distances from ref 22. ^c Bond distances from ref 23.

Table 5. Assigned Torsional Frequencies for the Solid Phase and Calculated Barriers for the Vapor State of CF3OBr Compared to Those for Several CF_3 Rotors^{*a*} in Other C_s Molecules

	CF ₃ OBr					
	CF_3 - OF^b	CF ₃ - OCl ^b	Raman, solid	RHF 6-311G*	CF_3 - OOF ^b	CF ₃ - OOCl ^b
$ \nu_{\rm t} ({\rm cm}^{-1}) $ $V ({\rm kcal \ mol}^{-1})$	144 4.64	122 4.6	131	93 3.4	78 2.9	80 3.7

^a Frequencies for the liquids and calculated barriers for the vapor state. ^b Data from ref 18.

was estimated at the RHF/6-311G* level of theory by optimizing the geometry with fixed values of the torsional angle F-C-O-Br at 10° increments (from 0 to 180°). All other structural parameters were allowed to relax in the computation. The assigned torsional frequency for the solid phase and the calculated barrier for the vapor state are shown in Table 5 and compared to those of several CF₃ rotors in other C_s molecules.¹⁸ Selected calculated geometry parameters of CF₃OBr (eclipsed conformation) compared to those for CF₃OF²² and CF₃OCl²³ are given in Table 4.

The calculated frequencies for the energetically favored staggered structure as well as for the eclipsed conformation are shown in Table 3. As expected, no imaginary frequencies were found for the eclipsed conformation, whereas for the staggered conformation one imaginary vibrational frequency was found, indicative of a transition state.

The calculated frequencies seem to be generally 10% too high at the Hartree-Fock level^{24,25} and decrease to 5% when electron correlations are taken into account.²⁶

Acknowledgment. This work was supported by the Fonds der chemischen Industrie and the Deutsche Forschungsgemeinschaft.

IC961113F

- (22) Diodati, F. P.; Bartell, L. S. J. Mol. Struct. 1971, 8, 395.
- (23) Oberhammer, H.; Mahmood, T.; Shreeve, J. J. Mol. Struct. 1984, 117, 311.
- (24) Pulay, P.; Forgarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. **1979**, 101, 2550.
- (25) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Frees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quantum Chem. 1981, 15, 269.
- (26) Yamaguchi, Y.; Schaeffer, H. F. J. Chem. Phys. 1980, 73, 2310.

⁽¹⁸⁾ Hammaker, R. M.; Fateley, W. G.; Manocha, A. S.; DesMarteau, D. D.; Streusand, B. J.; Durig, J. R. *J. Raman Spectrosc.* **1980**, *9*, 181. (19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson,